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Linear Algebra & Geometry
LECTURE 1

Basic terminology.

Complex numbers.



Sets and operations on sets

A set is an unordered collection of distinct objects taken from 
some "mother set" X usually called the universal set. The objects 
constituting a set are referred to as its elements. We will use x∈S to 
denote that “x is an element of S” and x∉S to denote that it is not.

We enclose in curly brackets elements of a set, e.g. {1, 2} denotes
the set whose elements are 1 and 2. Infinite sets must be described 
differently.

Example: S = {a, b, c, d}, where a, b, c, d represent themselves, 
i.e. letters of alphabet. Clearly, a∈S and e∉S. Be careful, though, if 
we use letters as symbols representing other objects, like numbers, 
it may happen that a and e represent the same thing and thus e
does belong to S.

The set with no elements is called the empty set and is denoted by 
∅. Remember that the empty set is not "nothing", hence {∅} is not 
the same as ∅. On the other hand, {} is the same as ∅.



If A and B are sets (of elements from some X) then we say that A is 
a subset of B and write A ⊆ B if every element of A is also an 
element of B. In symbols A ⊆ B iff (∀𝑥 ∈ 𝑋)(𝑥 ∈ A ⇒ 𝑥 ∈ B).

In this terminology, sets under consideration should be subsets of 
some set X.

We say that two sets A and B are equal if they consist of the same 
elements. We write then A=B. Clearly A=B if and only if A⊆ B
and B⊆ A. In symbols A=B iff (∀𝑥 ∈ 𝑋)(𝑥 ∈ A ⇔ 𝑥 ∈ B).



Given two subsets A and B of X we construct some new sets:

- the union of A and B, A∪B = {x ∈ 𝑋|𝑥 ∈ A ∨ 𝑥 ∈ 𝐵}

- the intersection of A and B, A∩B = {x ∈ 𝑋|𝑥 ∈ A ∧ 𝑥 ∈ 𝐵}

- the difference (or relative complement) of A and B, 
A\B = {x ∈ 𝑋|𝑥 ∈ A ∧ 𝑥 ∉ 𝐵}

- the (absolute) complement of A, A' = {x ∈ 𝑋|𝑥 ∉ 𝐴}. This is 
one reason why we should declare the universal set X 
beforehand, otherwise the symbol A' is ambiguous.

In each case, the resulting set is also a subset of X. 



The Cartesian product of two subsets of X, A×B, is a different 
story in that it may not be a subset of X:

A×B is the set of all ordered pairs (x,y) where x∈A and y∈B. The 
ordered pair (x,y) differs from a two-element set {x,y} in that 
(x,y)≠(y,x) (unless, of course, x=y). Hence (x,x) is a proper 
ordered pair while the symbol {x,x}, even though legal, does NOT 
denote a two-element set, {x,x} = {x}, so {x,x} is a sloppy, 
redundant notation for a one-element set {x}. This is sometimes 
unavoidable – for example, when we write things like "{x1,x2} is 
the set of roots of a quadratic polynomial" we do not know, in 
general, whether {x1,x2} denotes a one- or a two-element set.



We will use the concept of a function from one set into another in 
the intuitive sense, meaning f is a function from X into Y (f:X→Y) 
if for every element x∈X there exists exactly one element y∈Y 
assigned to x by f. Usually the element y assigned to x is denoted 
by f(x) and is called "the value of f for an argument x".

The sets X and Y are called the domain and the range of f, 
respectively.



The Story of Numbers

The story of numbers begins with positive integers. An educated 
hunter-gatherer returning to his cave would say to his cavewoman 
"I have killed two antelopes" or "3 rabbits" and she could reply "I 
have given birth to 4 babies in the meantime, so you better go and 
kill something bigger". These numbers (1,2,3 etc.) are called 
"natural" numbers for obvious reason. The set of all natural 
numbers is denoted by ℕ. The concept of a number evolved to 
include negative integers (resulting in ℤ, the set of all integers) and 
fractions, resulting in ℚ, the set all rational numbers. The ancient 
Greeks (Pythagoreans) believed that that was it until about the 5th 
century BC, when Hippasus was able to deduce that no rational 
number is the length of the diagonal of the unit square (according 
to the legend, he was subsequently murdered for shattering their 
beautiful theory). Somewhere along the way people also invented 
the number zero. 



From today’s perspective, we look at the history of numbers as the 
constant effort to create more “complete” system in the sense that 
they include solutions to more and more types of equations –
usually, but not exclusively,  polynomial equations. 

When it comes to solving polynomial equations of degrees higher 
than 1 the problem becomes more complicated. Even the 
construction of the set of real numbers ℝ (let us just say "all 
possible distances and their negatives") was not enough to ensure 
solvability of all polynomial equations. We can easily construct a 
non-solvable polynomial equation with integer coefficients and the 
degree as small as 2, for example 𝑥2+1=0. It turned out that the 
solution is fairly simple. It is enough to admit the existence of just 
one more object, the imaginary unit i with the property 𝑖2 = −1
and all polynomial equations become solvable. Of course, if we 
want to create a consistent arithmetic system, admitting the 
number i, we must also accept all the consequences, i.e. all 
multiplicities of i and sums of real numbers and multiplicities of i.



Complex Numbers

The set of complex numbers is the set ℂ of all expressions of the 
form a+bi, where a and b are real numbers and i is the imaginary 
unit satisfying the condition 𝑖2 = −1. 
Symbolically, ℂ ={a+bi | a,b ∈ ℝ}. For a complex number z=a+bi, 
the two real numbers a and b are referred to as the real part, Rez, 
and the imaginary part, Imz, of z, respectively. So we can also 
write z = Re z + iIm z.

The question "where the hell is this i number on the real axis ℝ?" 

has as much sense as "where the hell is 2 in the set of quotients 
of integers?", i.e. none. The answer in both cases is obviously 
"nowhere".



Arithmetic of complex numbers

The usual arithmetic operations (addition, multiplication etc.) can 
be performed on complex numbers. They also conform to the 
properties of these operations for real numbers. To be more 
precise, we add and multiply complex numbers as if they were 
algebraic expressions with one extra rule: whenever 𝑖2 appears it 
is replaced with −1. Hence,

(a+bi) + (c+di) = (a+c) + (b+d)i

and

(a+bi) ⋅ (c+di) = ac + adi + bic +bd𝑖2 = (ac−bd) + (ad+bc)i.



Definition.
A binary (meaning two-argument) algebraic operation on a set X 
is any function f:X×X→X. The pair (X,#) is then called and 
algebraic system or, simply, an algebra.

Addition and multiplication are algebraic operations on ℂ while 
subtraction is NOT an operation on ℕ because it may result in a 
negative integer, not belonging to ℕ. 
The important point in the definition, often overlooked, is that the 
result of the operation defined on a set must belong to the set.

We tend to use symbols like +,*,×,⋅ for operations, and we place 
the operation symbol between the arguments rather than in front of 
the pair of arguments. +(a,b) seems an unnatural way of writing 
a+b.



Properties of operations

Definition.
Suppose (X,#) is an algebra. We say that
- # is commutative iff ∀𝑎, 𝑏 ∈ 𝑋 𝑎#𝑏 = 𝑏#𝑎
- # is associative iff ∀𝑎, 𝑏, 𝑐 ∈ 𝑋 𝑎#𝑏 #𝑐 = 𝑎#(𝑏#𝑐)
- e is an identity element for #  iff ∀𝑎 ∈ 𝑋 𝑎#𝑒 = 𝑒#𝑎 = 𝑎
- p is an inverse element for a iff 𝑎#𝑝 = 𝑝#𝑎 = 𝑒 (assuming that 
e is an identity element for #. If there is none, the question of an 
inverse for an element of X is meaningless).

Definition.
Suppose # and $ are (binary) operations on a set X, making 
(X,#,$) and algebra with two operations. We say that # is 
distributive with respect to $ (or distributive over $) iff
∀𝑎, 𝑏, 𝑐 ∈ 𝑋 𝑎# 𝑏$𝑐 = 𝑎#𝑏 $(𝑎#𝑐).

Replacing X with ℝ, # with ⋅ and $ with + we obtain the  well-
known principle of distributivity of multiplication of real numbers 
over addition: a⋅(b+c) = a⋅b+a⋅c.



It can be easily verified that both addition and multiplication of 
complex numbers are commutative and associative, and that 
multiplication is distributive over addition. 

For example, let us verify associativity of multiplication:

LHS = [(a+bi)(c+di)](e+fi) = 
[(ac−bd)+(ad+bc)i](e+fi) = 
(ace−bde−adf−bcf)+(acf−bdf+ade+bce)i

while

RHS = (a+bi)[(c+di)(e+fi)] = 

(a+bi)[(ce−df)+(cf+de)i] = 

(ace−adf−bcf −bde)+(acf+ade+bce−bdf)i

so the expressions are identical. Distributivity of multiplication 
over addition can be verified in the same way.



Clearly, 0+0i, usually simply denoted by 0, is the only identity 
element for complex addition and 1+0i = 1 is the identity for 
multiplication. 

It is also clear that −𝑎 + −𝑏 𝑖 serves as the inverse for z=a+bi
with respect to addition. What about invertibility of complex 
numbers with resp. to multiplication? A simple calculation reveals 

that 
𝑎

𝑎2+𝑏2
+

−𝑏𝑖

𝑎2+𝑏2
is the inverse of z=a+bi with respect to 

multiplication (unless 𝑎2 + 𝑏2 = 0 which happens only if z = 0). 
We obtain that every nonzero complex number is invertible with 
respect to multiplication, just like in the set of real numbers. 

Denoting the inverse of w=c+di by 𝑤−1 =
1

𝑐+𝑑𝑖
we can write 

complex fractions in the standard form of a complex number: 
𝑎+𝑏𝑖

𝑐+𝑑𝑖
= 
(𝑎+𝑏𝑖)(𝑐−𝑑𝑖)

(𝑐+𝑑𝑖)(𝑐−𝑑𝑖)
= 

𝑎𝑐−𝑏𝑑 +(𝑏𝑐+𝑎𝑑)𝑖

𝑐2+𝑑2
= 
𝑎𝑐−𝑏𝑑

𝑐2+𝑑2
+
𝑏𝑐+𝑎𝑑

𝑐2+𝑑2
𝑖



Definition.
With every complex number z = a+bi we associate the conjugate
of z, denoted by ҧ𝑧 = a−bi.

Notice that z ⋅ ҧ𝑧 = 𝑎2 + 𝑏2 is always a (nonnegative) real number. 

What we did in the last transformation of 
𝑧

𝑤
is called the expansion 

of the fraction by the factor of ഥ𝑤. This guarantees that we get rid 
of the imaginary unit i in the denominator.

Definition.
The absolute value or modulus of a complex number z = a+bi is 

the number |z| = 𝑎2 + 𝑏2.

Notice that 𝑧 2 = 𝑧 ⋅ 𝑧 .



Geometrical approach to complex numbers

We can look at complex numbers as simply ordered pairs of 
real numbers. The coefficient i in a+bi is there only to tell us 
which of a and b should be considered the first, and which the 
second element of the ordered pair. From this point of view, 
complex numbers can be identified with points of the 
Cartesian plane (or vectors anchored at the origin). We call this 
“geometrical interpretation of complex numbers”. 



We can rewrite the definition of addition and multiplication of 
complex numbers in this language:

(a,b)+(c,d) = (a+c,b+d) which corresponds to geometrical 
addition of vectors anchored at (0,0) with endpoints at (a,b) 
and (c,d), respectively, and

(a,b)⋅(c,d) = (ac-bd,ad+bc) (geometrical meaning of this 
operation is more complicated).

Hence, we can look at the algebra of complex numbers as an 
extension of arithmetic from real numbers to pairs of real 
numbers.



Notice that both complex addition and multiplication, when 
performed on complex numbers with imaginary parts are just 
"normal" arithmetic operations:
(a,0)(c,0) = (ac-0⋅0,a⋅0+0⋅c) = (ac,0). Or, in the standard form,
(a+0i)(c+0i) = ac-0⋅0+(a0+0c)i = ac. The same for addition.

The complex modulus, when applied to a real number gives 

the "normal" absolute value: |a+0i| = 𝑎2 + 02 = 𝑎2 = |a|.

Comprehension test

1. The same happens for complex division.

2. z = z if and only if z is a real number

3. z = z

4. z + w = z + w

5. 𝑧 ⋅ 𝑤 = 𝑧 ⋅ 𝑤



A point z of the plane can be identified by its Cartesian 
coordinates, say (a,b), but also by its polar coordinates, i.e. the 
distance r from the origin and the angle 𝛼 between positive 
half-axis OX and the segment (0,0)(a,b). Hence, (a,b)=(rcos
𝛼,rsin 𝛼) or, equivalently, z = a+bi = r(cos 𝛼 + isin 𝛼). Clearly, 

r = 𝑎2 + 𝑏2, i.e. r = |z|

Definition.
The formula r(cos 𝛼 + isin 𝛼) is known as the polar form
(sometimes trigonometric form) of a complex number z. 

(Wikipedia & TT)


